93 research outputs found

    Strange metal electrodynamics across the phase diagram of Bi<sub>2-<i>x</i></sub>Pb<sub><i>x</i></sub>Sr<sub>2-<i>y</i></sub>La<sub><i>y</i></sub>CuO<sub>6+<i>δ</i></sub> cuprates

    Get PDF
    Unlocking the mystery of the strange metal state has become the focal point of high-Tcresearch, not because of its importance for superconductivity, but because it appears to represent a truly novel phase of matter dubbed "quantum supreme matter. " Detected originally through high magnetic field, transport experiments, signatures of this phase have now been uncovered with a variety of probes. Our high resolution optical data of the low-Tccuprate superconductor, Bi2-xPbxSr2-yLayCuO6+delta allows us to probe this phase over a large energy and temperature window. We demonstrate that the optical signatures of the strange metal phase persist throughout the phase diagram. The strange metal signatures in the optical conductivity are twofold: (i) a low energy Drude response with Drude width on the order of temperature and (ii) a high energy conformal tail with a doping dependent power-law exponent. While the Drude weight evolves monotonically throughout the entire doping range studied, the spectral weight contained in the high energy conformal tail appears to be doping and temperature independent. Our analysis further shows that the temperature dependence of the optical conductivity is completely determined by the Drude parameters. Our results indicate that there is no critical doping level inside the superconducting dome where the carrier density starts to change drastically and that the previously observed "return to normalcy " is a consequence of the increasing importance of the Drude component relative to the conformal tail with doping. Importantly, both the doping and temperature dependence of the resistivity are largely determined by the Drude width

    Revealing the Dynamic Magneto-ionic Environments of Repeating Fast Radio Burst Sources through Multi-year Polarimetric Monitoring with CHIME/FRB

    Full text link
    Fast radio bursts (FRBs) display a confounding variety of burst properties and host galaxy associations. Repeating FRBs offer insight into the FRB population by enabling spectral, temporal and polarimetric properties to be tracked over time. Here, we report on the polarized observations of 12 repeating sources using multi-year monitoring with the Canadian Hydrogen Intensity Mapping Experiment (CHIME) over 400-800 MHz. We observe significant RM variations from many sources in our sample, including RM changes of several hundred rad m−2\rm{rad\, m^{-2}} over month timescales from FRBs 20181119A, 20190303A and 20190417A, and more modest RM variability (ΔRM≲\rm{\Delta RM \lesssim} few tens rad m−2^{-2}) from FRBs 20181030A, 20190208A, 20190213B and 20190117A over equivalent timescales. Several repeaters display a frequency dependent degree of linear polarization that is consistent with depolarization via scattering. Combining our measurements of RM variations with equivalent constraints on DM variability, we estimate the average line-of-sight magnetic field strength in the local environment of each repeater. In general, repeating FRBs display RM variations that are more prevalent/extreme than those seen from radio pulsars in the Milky Way and the Magellanic Clouds, suggesting repeating FRBs and pulsars occupy distinct magneto-ionic environments

    LOFAR Detection of 110-188 MHz Emission and Frequency-Dependent Activity from FRB 20180916B

    Get PDF
    FRB 20180916B is a well-studied repeating fast radio burst source. Its proximity (~150 Mpc), along with detailed studies of the bursts, have revealed many clues about its nature -- including a 16.3-day periodicity in its activity. Here we report on the detection of 18 bursts using LOFAR at 110-188 MHz, by far the lowest-frequency detections of any FRB to date. Some bursts are seen down to the lowest-observed frequency of 110 MHz, suggesting that their spectra extend even lower. These observations provide an order-of-magnitude stronger constraint on the optical depth due to free-free absorption in the source's local environment. The absence of circular polarization and nearly flat polarization angle curves are consistent with burst properties seen at 300-1700 MHz. Compared with higher frequencies, the larger burst widths (~40-160 ms at 150 MHz) and lower linear polarization fractions are likely due to scattering. We find ~2-3 rad/m^2 variations in the Faraday rotation measure that may be correlated with the activity cycle of the source. We compare the LOFAR burst arrival times to those of 38 previously published and 22 newly detected bursts from the uGMRT (200-450 MHz) and CHIME/FRB (400-800 MHz). Simultaneous observations show 5 CHIME/FRB bursts when no emission is detected by LOFAR. We find that the burst activity is systematically delayed towards lower frequencies by ~3 days from 600 MHz to 150 MHz. We discuss these results in the context of a model in which FRB 20180916B is an interacting binary system featuring a neutron star and high-mass stellar companion.Comment: Accepted for publication by ApJ

    Detection of Repeating FRB 180916.J0158+65 Down to Frequencies of 300 MHz

    Get PDF
    We report on the detection of seven bursts from the periodically active, repeating fast radio burst (FRB) source FRB 180916.J0158+65 in the 300-400-MHz frequency range with the Green Bank Telescope (GBT). Emission in multiple bursts is visible down to the bottom of the GBT band, suggesting that the cutoff frequency (if it exists) for FRB emission is lower than 300 MHz. Observations were conducted during predicted periods of activity of the source, and had simultaneous coverage with the Low Frequency Array (LOFAR) and the FRB backend on the Canadian Hydrogen Intensity Mapping Experiment (CHIME) telescope. We find that one of the GBT-detected bursts has potentially associated emission in the CHIME band (400-800 MHz) but we detect no bursts in the LOFAR band (110-190 MHz), placing a limit of α>−1.0\alpha > -1.0 on the spectral index of broadband emission from the source. We also find that emission from the source is severely band-limited with burst bandwidths as low as ∼\sim40 MHz. In addition, we place the strictest constraint on observable scattering of the source, << 1.7 ms, at 350 MHz, suggesting that the circumburst environment does not have strong scattering properties. Additionally, knowing that the circumburst environment is optically thin to free-free absorption at 300 MHz, we find evidence against the association of a hyper-compact HII region or a young supernova remnant (age << 50 yr) with the source.Comment: Accepted for publication in ApJ
    • …
    corecore